Cenospheres at Ceno Technologies - USA

Solar Flares

Solar flares and the benefits of using coated cenospheres from Ceno Technologies:-

Solar flares

A solar flare is a violent explosion in a star's ( like the Sun's) atmosphere releasing up to a total energy of 6 × 10 25 Joules. Solar flares take place in the solar corona and chromosphere extending many millions of miles into space, heating plasma to tens of millions of kelvins and accelerating electrons, protons and heavier ions to near the speed of light. They produce electromagnetic radiation across the electromagnetic spectrum at all wavelengths from long-wave radio to the shortest wavelength gamma rays. Most flares occur in active regions around sunspots, where intense magnetic fields emerge from the Sun's surface into the corona. Flares are powered by the sudden release of magnetic energy stored in the corona.

X-rays and UV radiation emitted by solar flares can affect Earth's ionosphere and disrupt long-range radio communications. Direct radio emission at decimetric wavelengths may disturb operation of radars and other devices operating at these frequencies.

Solar flares were first observed on the Sun in by Carrington and independently by Hodgson in 1859 as localized brightenings in a sunspot group. Stellar flares have also been observed on a variety of other stars.

The frequency of occurrence of solar flares varies, from several per day when the Sun is particularly "active" to less than one each week when the Sun is "quiet". Large flares are less frequent than smaller ones. Solar activity varies with an 11-year cycle (the solar cycle). At the peak of the cycle there are typically more sunspots on the Sun, and hence more solar flares .

HAZARDS

Solar flares and associated Coronal Mass Ejections (CMEs) strongly influence our local space weather. They produce streams of highly energetic particles in the solar wind and the Earth's magnetosphere which can present radiation hazards to satellites, spacecraft and astronauts. The soft X-ray flux of X class flares increases the ionization of the Earth’s upper atmosphere, which can interfere with short-wave radio communication, and can increase the drag on low orbiting satellites, leading to orbital decay. Energetic particles in the magnetosphere contribute to the Aurora Borealis (Northern Lights) and Aurora Australis (Southern Polar Lights).

Solar flares release a cascade of high energy particles known as a proton storm, which reaches Earth with a velocity of around 250 miles per second. Most proton storms take about two hours from the time of actual visual detection to reach Earth’s outer atmosphere, but a solar flare in January 2005 released the highest concentration of protons ever directly measured, taking only 15 minutes after observation to reach Earth, indicating a velocity of approximately one-third light speed.

The radiation risk posed by solar flares and Coronal Mass Ejections is one of the major concerns in discussions regarding manned missions to Mars or to the moon. Some kind of physical or magnetic shielding would be required to protect the astronauts. Originally it was thought that astronauts would have two hours time to get into shelter, but based on the January 2005 event, they may have as little as 15 minutes to do so.

Lightweight cenospheres coated with Silver or Gold from Ceno Technologies can be incorporated into fabrics or other protective garments such as space suits to shield against the hazards and effects of solar flares and the resultant electromagnetic radiation across the electromagnetic spectrum

High performance, extremely reflective, lightweight, low cost conductive shielding materials are available today!